某微型轿车制动系统(盘式制动器)设计(含CAD零件图装配图)(论文说明书18700字,CAD图7张)
摘要
自汽车发明以来,制动系统在车辆的行驶安全方面发挥着重要作用。近年来,随着汽车科技的进步和驾驶性能要求的标准严格,这种重要性越来越受到人们重视。驾驶人员需要根据不同的驾驶状况进行分析判断,从而调整汽车速度与车距来使汽车达到安全可靠使用的目的,而汽车制动系统则在这种要求与功能中发挥着关键作用,它的设计设计与应用应能够保证汽车轮胎与地面间在正常行驶使用中的各种工况下的牵引力。
本文基于联合国欧洲经济委员会(ECE)的制动法规规定,分析在不同的地面附着系数所需要的最低制动强度,并根据利用附着系数选取在不同制动强度下的最小制动力分配系数。根据最终选定的制动力分配系数计算车辆的同步附着系数以及在安装ABS系统干预下的前后轮先后抱死拖滑时的制动器最大制动力矩及最大地面制动力。由所得的制动器最大制动力矩计算各轮缸与主缸的尺寸参数。由地面最大制动力进行制动性能校核。
关键词:制动系统 地面附着系数 制动强度 制动力分配系数 制动性能校核
Abstract
Since the car was born, vehicle braking systems have played a crucial role in the safety of the vehicle. In recent years, with the advancement of vehicle technology and the increase in the speed of automobiles, this importance has become increasingly apparent. The driver needs to adjust the speed and distance of the car according to different traffic conditions to achieve the purpose of safe and reliable use of the car, while the car braking system plays a key role in this requirement and function, and its design, design and application should be able to guarantee Traction force between the automobile tire and the ground under various conditions during normal driving.
Based on the brake regulations of the United Nations Economic Commission for Europe (ECE), this paper analyzes the minimum braking strength required for different ground adhesion coefficients, and selects the minimum braking force distribution coefficient at different braking strengths based on the use of the adhesion coefficient. Calculate the synchronous adhesion coefficient of the vehicle according to the final selected brake force distribution coefficient and the maximum braking torque and the maximum ground braking force of the brake when the front and rear wheels under the intervention of the installation ABS system successively lock and drag. Calculate the size parameters of each wheel cylinder and master cylinder from the resulting maximum braking torque of the brake. Braking performance is checked by the maximum ground braking force.
Keywords: braking system; ground adhesion coefficient; braking strength; braking force distribution coefficient; braking performance check