{$cfg_webname}
主页 > 电子信息 > 电子 >

基于FPGA的分布式多路传感脉冲信号发生卡设计

来源:56doc.com  资料编号:5D21152 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9A5D21152
资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 帮助
资料介绍

基于FPGA的分布式多路传感脉冲信号发生卡设计(任务书,开题报告,论文14000字)
摘要
在当今各个领域的底层硬件系统中,传感器都有着至关重要且不可替代的作用。光纤传感系统是目前较为前沿的传感系统。任意波形发生器作为该系统中不可或缺的一部分,发挥着至关重要的作用。
本文针对信号发生器中的频率合成技术,分别采用了锁相环技术(PLL)和直接数字频率合成技术(DDS)两种方法,在现场可编程逻辑门阵列(FPGA)的开发环境下,完成了任意波形发生器的设计,同时针对其中存在的问题进行了分析。FPGA作为一种半定制电路技术,拥有着适用性较强的优势,可以完美地契合脉冲发生器地设计需求。本文的研究重点是脉冲信号发生器系统关键模块的设计与实现,具体内容如下:
(1)    总结了FPGA和频率合成技术的国内外研究现状,之后分别阐述了PLL和DDS两种信号合成技术的基本原理,平且针对DDS技术进行了详细的性能分析。证明了用FPGA实现这两种方法的可行性。为本文的实验奠定了理论基础。
(2)结合相关理论,完成了DDS的系统设计。针对其每个模块,从理论上进行了较为详细的原理和性能分析。为了一进步说明DDS的工作原理,本文以正弦信号为例,列举出了系统内部各个模块的大致波形,同时对其做出了相关的理论解释。
(3)    结合上述原理,在FPGA开发平台Vivado上,分别实现了PLL和DDS的verilog程序设计和实物制作。首先对相关实验器材和模块进行了简要介绍,之后完成了PLL和DDS的仿真波形和实际波形。结合结果进行了分析,提出了改进意见。为了进一步地满足实际工作过程中的需求,在DDS信号发生器基础上加上了串口通信模块,并且成功了实现了预期地功能。

关键词:FPGA;直接数字频率合成;锁相环;信号发生器

Abstract
Sensors have an irreplaceable role in the underlying hardware systems in all areas of thenewworld. The fiber optic sensing system is an advanced sensing system. Arbitrary waveform generators play an important role as an integral part of the system.
In this paper, the Phase Synthesis Loop (PLL) and Direct Digital frequency Synthesis (DDS) methods are adopted for the frequency synthesis technology in the signal generator, which is used in the development environment of the Field Programmable logic Gate Array (FPGA) forthe design of the arbitrary waveform generator. As a semi-custom circuit technology, FPGA has the advantage of strong applicability and can perfectly meet the design requirements of pulse generators. The aim of this paper is the design and implementation of key modules of pulse signal generator system. The specific contents are as follows:
(1) The paper summarized the research status of FPGA and frequency synthesis technology all over the world, expounded the basic principles of PLL and DDS technology respectively, and carried out detailed performance analysis for DDS. It shows the feasibility of implementing these two methods with FPGA. It laid a theoretical foundation for the experiment in this paper..
(2) Combined with relevant theories, the system of DDS was completed. For each of its modules, a more detailed principle and performance analysis was theoretically carried out. In order to explain the working principle of DDS, the sinusoidal signal is taken as an example to enumerate the approximate waveforms of each module in the system, and related theoretical explanations are made.
(3) Combining the above principles, on the FPGA development platform Vivado, the Verilog program design and physical production of PLL and DDS are realized respectively. First, the relevant experimental equipment and modules were briefly introduced, and then the simulated waveform and actual waveform of PLL and DDS were completed. The results were analyzed and the improvement suggestions were put forward. In order to further meet the requirements in the actual working process, a serial communication module is added to the DDS signal generator, and the expected function is successfully realized.

Keywords:FPGA; Direct Digital Frequency Synthesis;Phase-Locked Loop; signal generator
 
目录
第1章绪论    1
1.1 研究背景及意义    1
1.2 国内外发展现状    2
1.3 课题的研究内容    3
第2章任意波形发生器理论基础    4
2.1 锁相环频率合成技术基本原理    4
2.1.1 锁相环的基本原理    4
2.1.2  FPGA中的PLL    4
2.2 直接数字频率合成技术基本原理    5
2.2.1 正弦信号的产生原理    5
2.2.2 直接数字频率合成原理    7
2.3 直接数字频率合成的主要性能参数    8
2.3.1 相对带宽    8
2.3.2 频率分辨率    9
2.3.3 频率变化输出信号的相位连续性    9
2.3.4 任意波形输出    9
2.3.5 调制性能    10
2.3.6 噪声与杂散    10
2.4 本章小结    10
第3章直接数字频率合成器的系统设计    11
3.1 DDS系统的设计    11
3.1.1 相位累加器    12
3.1.2 波形查找表    13
3.1.3 其他外围模块    13
3.2 DDS系统的实际输出波形及分析    14
3.3 本章小结    16
第4章基于FPGA的任意脉冲发生器实验    17
4.1 主要实验设备介绍    17
4.1.1  FPGA芯片    17
4.1.2  AD/DA模块    17
4.1.3  测量及显示仪器    17
4.2 多路PLL信号发生器实现及分析    18
4.2.1 功能仿真    18
4.2.2 实物制作和结果分析    19
4.3 DDS任意脉冲发生器实现及分析    19
4.3.1 功能仿真    20
4.3.2 实物制作和结果分析    21
4.4 串口通信    22
4.4.1 系统设计    23
4.4.2 系统实现    23
4.5 本章小结    24
第5章总结与展望    25
5.1 总结    25
5.2 展望    25
参考文献    26
附录A 实验中部分器件实物图    27
致谢    28

推荐资料